CNS sympathetic outflow neurons to white fat that express MEL receptors may mediate seasonal adiposity.

نویسندگان

  • C K Song
  • T J Bartness
چکیده

Many animals show seasonal changes in adiposity that are triggered by changes in the photoperiod. For example, in short "winterlike" days, the nocturnal duration of pineal melatonin (MEL) secretion increases ultimately resulting in body fat decreases by Siberian hamsters. These decreases in body fat are mediated through increases in the sympathetic drive on white adipose tissue (WAT). The central nervous system (CNS) origins of the sympathetic outflow from brain to WAT include the suprachiasmatic nucleus (SCN), an area necessary for the reception of season-encoded MEL signals in Siberian hamsters. Therefore, we tested whether SCN neurons that are part of the sympathetic outflow to WAT also express MEL receptors (MEL(1a)). This was accomplished by labeling the sympathetic outflow from brain to WAT using a transsynaptic retrograde tract tracer, the pseudorabies virus (PRV), injected into inguinal WAT combined with labeling of brain MEL(1a) receptors using in situ hybridization. We found PRV-labeled neurons that also expressed MEL(1a)-receptor mRNA in several brain regions including the SCN. Thus the increased duration of MEL secretion in short days may increase MEL(1a)-receptor stimulation that, in turn, increases the sympathetic drive on WAT, thereby increasing lipolysis and decreasing adiposity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system.

It appears advantageous for many non-human animals to store energy body fat extensively and efficiently because their food supply is more labile and less abundant than in their human counterparts. The level of adiposity in many of these species often shows predictable increases and decreases with changes in the season. These cyclic changes in seasonal adiposity in some species are triggered by ...

متن کامل

Direct innervation of white fat and adrenal medullary catecholamines mediate photoperiodic changes in body fat.

Seasonal adjustments in Siberian hamster adiposity are triggered by day length changes [i.e., short "winter-like" days (SDs) elicit body fat decreases vs. long "summer-like" days (LDs)]. These and other white adipose tissue (WAT) mass decreases traditionally have been ascribed to lipolysis triggered by sympathetically mediated, adrenal medullary released epinephrine; however, recent evidence su...

متن کامل

Glutaminergic receptors in rostral ventrolateral medulla mediate the cardiovascular responses to activation of bed nucleus of the stria terminalis in female rats

The bed nucleus of the stria terminalis (BST) has been known to contain estrogen (E)-concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of glutamate antagonist receptors in the rostral ventrolateral medulla (RVL...

متن کامل

Glutaminergic receptors in rostral ventrolateral medulla mediate the cardiovascular responses to activation of bed nucleus of the stria terminalis in female rats

The bed nucleus of the stria terminalis (BST) has been known to contain estrogen (E)-concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of glutamate antagonist receptors in the rostral ventrolateral medulla (RVL...

متن کامل

Browning of white adipose tissue by melatonin

There are two distinct types of adipose tissue which have different functions within the body, white (WAT) and brown (BAT). Browning of WAT occurs with increases in the WAT sympathetic nervous system (SNS) drive. In this regard we previously reported that melatonin (MEL) stimulation of MEL receptor 1A (MEL1a) within the SNS outflow to the WAT might be implicated in a naturally-occurring reversa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 281 2  شماره 

صفحات  -

تاریخ انتشار 2001